MATH 220A

Mathematical Logic

Description: Lecture, three hours. Requisite: course M114S. Fundamental methods and results in mathematical logic, using mathematical methods to reason about existence or nonexistence of proofs and computations in many different settings. Topics include compactness theorem, saturation of models, completeness and incompleteness theorems of Gödel, Turing computability and degrees of unsolvability, recursion in Baire space, Zermelo/Fraenkel axioms, universe of constructible sets, and related equiconsistency results in set theory. S/U or letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
AD
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
1 of 1

Adblock Detected

Bruinwalk is an entirely Daily Bruin-run service brought to you for free. We hate annoying ads just as much as you do, but they help keep our lights on. We promise to keep our ads as relevant for you as possible, so please consider disabling your ad-blocking software while using this site.

Thank you for supporting us!