ENGR 10A
Introduction to Complex Systems Science
Description: Lecture, four hours; outside study, eight hours. How macroscopic patterns emerge dynamically from local interactions of large number of interdependent (often heterogeneous) entities, without global design or central control. Such emergent order, whose explanation cannot be reduced to explanations at level of individual entities, is ubiquitous in biology and human social collectives, but also exists in certain physical processes such as earthquakes and some chemical reactions. Complexity also deals with how such systems undergo sudden changes, including catastrophic breakdowns, in absence of external force or central influence. Key aspect of biological and social collectives is their nature as complex adaptive systems, where individuals and groups adjust their behavior to external conditions. In biological and social systems, complexity science goes beyond traditional mathematics and statistics in its use of multiagent computational models that better capture these complex, adaptive, and self-organizing phenomena. Letter grading.
Units: 5.0
Units: 5.0