COM SCI M262C
Causal Inference
Description: (Same as Statistics M241.) Lecture, four hours; outside study, eight hours. Requisite: one graduate probability or statistics course such as course 262A, Statistics 200B, or 202B. Review of Bayesian networks, causal Bayesian networks, and structural equations. Learning causal structures from data. Identifying causal effects. Covariate selection and instrumental variables in linear and nonparametric models. Simpson paradox and confounding control. Logic and algorithmization of counterfactuals. Probabilities of counterfactuals. Direct and indirect effects. Probabilities of causation. Identifying causes of events. Letter grading.
Units: 4.0
Units: 4.0