COM SCI 260B

Algorithmic Machine Learning

Description: Lecture, four hours; outside study, eight hours. In-depth examination of handful of ubiquitous algorithms in machine learning. Covers several classical tools in machine learning but more emphasis on recent advances and developing efficient and provable algorithms for learning tasks. Topics include low-rank approximations, online learning, multiplicative weights framework, mathematical optimization, outlier-robust algorithms, streaming algorithms. S/U or letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
1 of 1

Adblock Detected

Bruinwalk is an entirely Daily Bruin-run service brought to you for free. We hate annoying ads just as much as you do, but they help keep our lights on. We promise to keep our ads as relevant for you as possible, so please consider disabling your ad-blocking software while using this site.

Thank you for supporting us!